Spis treści1
1 Informacje dotyczące niniejszej instrukcji5
1.1 Zakres obowiązywania5
1.2 Grupa docelowa
1.3 Symbole stosowane w niniejszej instrukcji6
2 Bezpieczeństwo
2.1 Użytkowanie zgodnie z przeznaczeniem7
2.2 Normy bezpieczeństwa7
2.3 Ważne informacje dotyczące bezpieczeństwa8
2.4 Symbole na tabliczce znamionowej9
2.5 Podstawowe środki bezpieczeństwa10
3 Rozpakowanie 11
3.1 Zakres dostawy11
3.2 Sprawdzenie pod kątem ewentualnych uszkodzeń powstałych podczas transportu 11
4 Montaż
4.1 Warunki otoczenia13
4.3 Montaż falownika z uchwytem ściennym16
5 Podłączenie elektryczne19
5.1 Bezpieczeństwo19
5.2 Układ instalacji w przypadku jednostek bez wbudowanego przełącznika prądu
stałego 20
5.3 Widok panelu złączy 22
5.4 Podłączanie prądu przemiennego 23
5.4.1 Warunki podłączenia prądu przemiennego23 Instrukcja montażu i eksploatacji 1

5.4.2 Podłączenie do sieci elektroenergetycznej	24
5.4.3 Podłączanie drugiego uziemienia ochronnego	26
5.4.4 Zabezpieczenie różnicowoprądowe	28
5.4.5 Kategoria przepięcia	28
5.4.6 Wyłącznik prądu przemiennego	29
5.5 Przyłącze prądu stałego	30
5.5.1 Wymogi wstępne do podłączenia prądu stałego	
6 Łączność	37
6.1 Monitorowanie instalacji przez interfejs RS485	37
6.2 Monitorowanie systemu przez sieć Ethernet	41
6.4 Tryby żądania odpowiedzi falownika (DRED)	44
6.5 Podłączanie inteligentnego licznika (element opcjonalny)	46
6.5 Komunikacja z urządzeniami do monitorowania innych producentów	47
6.6 Aktualizacja oprogramowania sprzętowego za pośrednictwem USB	47
7 Rozruch	47
7.1 Sprawdzenie elektryczne	47
7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne	47 48
7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne 7.3 Uruchomienie	47 48 48
 7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne 7.3 Uruchomienie 8 Odłączanie falownika od źródeł zasilania 	47 48 48 49
 7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne 7.3 Uruchomienie 8 Odłączanie falownika od źródeł zasilania 9 Eksploatacja 	47 48 48 49 51
 7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne 7.3 Uruchomienie 8 Odłączanie falownika od źródeł zasilania 9 Eksploatacja 9.1 Budowa panelu sterowania 	47 48 48 49 51 51
 7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne 7.3 Uruchomienie 8 Odłączanie falownika od źródeł zasilania 9 Eksploatacja 9.1 Budowa panelu sterowania 9.2 Diody LED 	47 48 48 49 51 51 52
 7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne 7.3 Uruchomienie 8 Odłączanie falownika od źródeł zasilania 9 Eksploatacja 9.1 Budowa panelu sterowania 9.2 Diody LED 9.3 Komunikaty ekranowe 	47 48 48 51 51 52 53
 7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne 7.3 Uruchomienie 8 Odłączanie falownika od źródeł zasilania 9 Eksploatacja 9.1 Budowa panelu sterowania 9.2 Diody LED 9.3 Komunikaty ekranowe 9.4 Wyświetlacz 	47 48 48 51 51 52 53 56
 7.1 Sprawdzenie elektryczne 7.2 Sprawdzenie mechaniczne 7.3 Uruchomienie 8 Odłączanie falownika od źródeł zasilania 9 Eksploatacja 9.1 Budowa panelu sterowania 9.2 Diody LED 9.3 Komunikaty ekranowe 9.4 Wyświetlacz 9.4.1 Budowa menu 	47 48 51 51 52 53 56

9.4.4 Strona główna	57
9.4.5 Informacje o pracy urządzenia	58
9.4.6 Menu główne	59
9.4.7 Statystyki	59
9.4.8 Dziennik zdarzeń	60
9.4.9 Ustawianie daty i godziny	60
9.4.10 Ustawianie języka	61
9.4.11 Ustawianie kontrastu	61
9.4.12 Ustawianie parametrów zabezpieczeń	61
9.4.13 Ustawianie przeciążenia	62
9.4.14 Regulacja mocy czynnej	63
9.4.15 Regulacja mocy biernej	64
9.4.16 Ustawianie trybu pracy instalacji fotowoltaicznej	65
9.4.17 Ustawianie trybu pracy urządzenia zgodnie z ustawą EEG	65
9.4.19 Informacje o urządzeniu	66
9.4.20 Usuwanie danych archiwalnych	67
10.1 Parametry wejścia prądu stałego	68
10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego	68
10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa	
10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa 10.5 Sprawność	
10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa 10.5 Sprawność 10.6 Redukcja mocy	
 10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa 10.5 Sprawność 10.6 Redukcja mocy 11 Rozwiązywanie problemów 	
 10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa 10.5 Sprawność 10.6 Redukcja mocy 11 Rozwiązywanie problemów 12 Konserwacja 	
 10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa 10.5 Sprawność 10.6 Redukcja mocy 11 Rozwiązywanie problemów 12 Konserwacja 12.1 Czyszczenie styków przełącznika prądu stałego 	
 10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa 10.5 Sprawność 10.6 Redukcja mocy 11 Rozwiązywanie problemów 12 Konserwacja 12.1 Czyszczenie styków przełącznika prądu stałego 12.2 Czyszczenie radiatora 	
 10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa 10.5 Sprawność 10.6 Redukcja mocy 11 Rozwiązywanie problemów 12 Konserwacja 12.1 Czyszczenie styków przełącznika prądu stałego 12.2 Czyszczenie radiatora 13 Recykling i utylizacja 	
 10.1 Parametry wejścia prądu stałego 10.2 Parametry wyjściowego prądu przemiennego 10.4 Przepisy bezpieczeństwa 10.5 Sprawność 10.6 Redukcja mocy 11 Rozwiązywanie problemów 12 Konserwacja 12.1 Czyszczenie styków przełącznika prądu stałego 12.2 Czyszczenie radiatora 13 Recykling i utylizacja 14 Deklaracja zgodności z normami Unii Europejskiej 	

Informacje ogólne

ASW TLC to beztransformatorowy falownik fotowoltaiczny z dwoma modułami śledzącymi MPP. Przekształca on prąd stały, uzyskany z zespołów modułów fotowoltaicznych, w prąd przemienny zgodny z wymogami sieci elektroenergetycznej i wprowadza go do sieci.

1.1 Zakres obowiązywania

W niniejszej instrukcji opisano montaż, podłączenie, rozruch i konserwację następujących falowników ASW TLC:

- ASW TLC3000
- ASW TLC4000
- ASW TLC5000
- ASW TLC6000
- ASW TLC8000
- ASW TLC10000

Należy przestrzegać treści wszelkich dokumentów dołączonych do falownika i przechowywać je w dogodnym i łatwo dostępnym miejscu.

1.2 Grupa docelowa

Niniejszy dokument jest przeznaczony dla odpowiednio wykwalifikowanych osób i użytkowników końcowych. Czynności oznaczone w niniejszym dokumencie symbolem ostrzegawczym mogą wykonywać wyłącznie osoby o odpowiednich kwalifikacjach. Zadania, które nie wymagają szczególnych uprawnień nie są oznaczone i mogą być wykonywane także przez użytkowników końcowych. Wykwalifikowane osoby muszą spełniać następujące kryteria:

- posiadać wiedzę o sposobie działania i obsługi falowników,
- odbyć szkolenie z zakresu przeciwdziałania niebezpieczeństwom i zagrożeniom związanym
- z montażem i eksploatacją urządzeń i instalacji elektrycznych,
- odbyć szkolenie z zakresu montażu i rozruchu urządzeń i instalacji elektrycznych,
- posiadać wiedzę z zakresu obowiązujących norm i dyrektyw,

 zapoznać się z niniejszym dokumentem oraz wszelkimi informacjami dotyczącymi bezpieczeństwa oraz stosować się do nich.

1.3 Symbole stosowane w niniejszej instrukcji

W niniejszej instrukcji środki bezpieczeństwa i ogólne informacje dotyczące bezpieczeństwa oznaczono następującymi symbolami:

NIEBEZPIECZEŃSTWO

NIEBEZPIECZEŃSTWO wskazuje na niebezpieczną sytuację, która, jeśli wystąpi, spowoduje zgon albo poważne obrażenia.

UWAGA wskazuje na niebezpieczną sytuację, która, jeśli wystąpi, może spowodować zgon albo

poważne obrażenia.

OSTRZEŻENIE

OSTRZEŻENIE wskazuje na niebezpieczną sytuację, która, jeśli wystąpi, może spowodować drobne albo

umiarkowane obrażenia.

INFORMACJA

INFORMACJA wskazuje na sytuację, która, jeśli wystąpi, może spowodować szkody materialne.

i

WSKAZÓWKA przekazuje informacje istotne dla optymalnego montażu i eksploatacji falownika.

2 Bezpieczeństwo

2.1 Użytkowanie zgodnie z przeznaczeniem

- Urządzenie ASW TLC przekształca prąd stały, uzyskany z zespołu modułów fotowoltaicznych, w prąd przemienny zgodny z wymogami sieci elektroenergetycznej.
- Urządzenie ASW TLC jest przeznaczone do użytkowania zarówno wewnątrz, jak i na zewnątrz budynków.
- Do urządzenia ASW TLC należy podłączać wyłącznie zespoły modułów fotowoltaicznych (moduły i okablowanie fotowoltaiczne) drugiej klasy ochronności, zgodnie z normą IEC 61730, klasa zastosowania A.

Do urządzenia ASW TLC nie należy podłączać źródeł energii innych niż moduły fotowoltaiczne.

- Moduły fotowoltaiczne o dużej pojemności elektrycznej względem potencjału uziemienia należy stosować wtedy, gdy ich pojemność sprzęgająca nie przekracza 1,0μF.
- Gdy moduły fotowoltaiczne są wystawione na działanie światła, urządzenie jest zasilane prądem stałym.
- Przy projektowaniu elektrowni fotowoltaicznych należy każdorazowo zapewnić zgodność wartości z dopuszczalnym zakresem pracy wszystkich podzespołów.

2.2 Normy bezpieczeństwa

Urządzenie ASW TLC spełnia wymogi europejskiej dyrektywy niskonapięciowej 2006/95/WE oraz dyrektywy 2004/108/WE w sprawie kompatybilności elektromagnetycznej. Urządzenie ASW TLC jest także zgodne z wymogami w zakresie bezpieczeństwa i kompatybilności elektromagnetycznej obowiązującymi na rynkach w Australii i Nowej Zelandii. Urządzenie ASW TLC uzyskało znak CE i RCM. Bardziej szczegółowe informacje o certyfikatach w innych krajach i regionach są dostępne na naszej stronie internetowej (<u>http://www.aiwei-tech.com</u>).

2.3 Ważne informacje dotyczące bezpieczeństwa

NIEBEZPIECZEŃSTWO

Wszelkie prace dotyczące falownika mogą wykonywać wyłącznie osoby o odpowiednich

kwalifikacjach, które zapoznały się ze wszystkimi informacjami dotyczącymi

bezpieczeństwa zawartymi w niniejszej instrukcji.

Ryzyko obrażeń na skutek porażenia prądem i pożaru spowodowanych prądem upływowym o wysokim natężeniu.

 Falownik musi być dobrze uziemiony, aby chronić mienie i zapewnić bezpieczeństwo osób.

Ryzyko obrażeń na skutek dotknięcia gorącego radiatora

• Podczas działania urządzenia radiator może być gorący. Nie dotykać!

Możliwość doznania uszczerbku na zdrowiu na skutek promieniowania

elektromagnetycznego

• Należy zachować odległość co najmniej 20 cm od pracującego falownika.

INFORMACJA

Uziemienie ramy modułów fotowoltaicznych

• W zakresie uziemienia zespołu modułów fotowoltaicznych należy przestrzegać

miejscowych przepisów. Zalecamy dobre uziemienie ram modułów fotowoltaicznych.

• Nie należy uziemiać żadnego z zacisków łańcuchów fotowoltaicznych.

2.4 Symbole na tabliczce znamionowej

Symbol	Objaśnienie
	Niebezpieczeństwo, ostrzeżenie i uwaga
	Informacje dotyczące bezpieczeństwa, ważne dla bezpieczeństwa osób.
	Nieprzestrzeganie informacji dotyczących bezpieczeństwa zawartych w niniejszej
	instrukcji może prowadzić do obrażeń albo zgonu.
	Zagrożenie życia na skutek porażenia prądem
	Urządzenie pracuje pod wysokim napięciem. Przed rozpoczęciem jakichkolwiek prac
	przy urządzeniu należy odłączyć je od źródeł zasilania. Wszystkie prace dotyczące
	urządzenia muszą być wykonywane wyłącznie przez osoby posiadające kwalifikacje w
	zakresie elektryki.
	Ryzyko poparzenia o gorące powierzchnie
	Podczas działania urządzenie może się rozgrzać. Nie dotykać urządzenia podczas jego
	działania.
	Przed wykonywaniem jakichkolwiek prac należy odczekać, aż urządzenie ostygnie
	dostatecznie.
\heartsuit	Oznakowanie WEEE
X	Nie należy wyrzucać urządzenia wraz z odpadami komunalnymi, ale należy je
	zutylizować zgodnie z przepisami dotyczącymi usuwania odpadów elektronicznych
	obowiązującymi w miejscu montażu.
	Oznakowanie CE
	Produkt spełnia wymogi odnośnych dyrektyw Unii Europejskiej.
S its	Certyfikat bezpieczeństwa
	Urządzenie przeszło testy TÜV i spełnia wymogi europejskiej ustawy o bezpieczeństwie
93 OOD Head	sprzętu i produktów.
$\mathbf{\Delta}$	RCM
	Produkt spełnia wymogi odnośnych australijskich norm dotyczących niskiego napięcia i
ß	kompatybilności elektromagnetycznej.
	Wyładowanie kondensatorów
	Zagrożenie życia na skutek wysokiego napięcia w falowniku, należy odczekać
	pięć minut. Przed rozpoczęciem prac przy falowniku należy odłączyć go od wszelkich
	źródeł zasilania, jak opisano w rozdziale 8.

Należy przestrzegać treści dokumentów

Należy przestrzegać treści wszelkich dokumentów dostarczonych wraz z urządzeniem.

2.5 Podstawowe środki bezpieczeństwa

Zapewniamy następujące środki bezpieczeństwa:

- 1. Zabezpieczenie przed przepięciem i zabezpieczenie podnapięciowe
- 2. Zabezpieczenie przed zbyt wysoką albo zbyt niską częstotliwością.
- 3. Monitorowanie przekroczenia dopuszczalnej temperatury.
- 4. Monitorowanie prądu różnicowego.
- 5. Wykrywanie uszkodzenia izolacji.
- 6. Zabezpieczenie przed pracą wyspową.
- 7. Monitorowanie wstrzyknięć prądu stałego.

3.1 Zakres dostawy

Element	Opis	Liczba sztuk
А	Falownik	1
В	Uchwyt ścienny	1
С	Zestaw do montażu: śruby z łbem stożkowym M5×12 (2 sztuki) kotwy ścienne i śruby z łbem sześciokątnym (4 sztuki),	1
D	Złącze prądu stałego	2
E	Wtyk przyłączeniowy prądu przemiennego	1
F	Wtyk RJ45	2
G	Zaślepka do złącza prądu stałego	2
Н	Wtyk przyłączeniowy inteligentnego licznika (opcjonalny)	1
I	Antena WiFi (opcjonalna)	1
J	Dokumentacja	1

Należy dokładnie sprawdzić, czy w opakowaniu znajdują się wszystkie elementy. W przypadku stwierdzenia braku któregokolwiek z elementów, należy niezwłocznie skontaktować się ze sprzedawcą.

3.2 Sprawdzenie pod kątem ewentualnych uszkodzeń powstałych podczas transportu

Należy dokładnie sprawdzić opakowanie w momencie dostawy. W przypadku stwierdzenia uszkodzenia opakowania, co wskazuje, że falownik mógł ulec uszkodzeniu, należy

niezwłocznie poinformować o tym firmę odpowiedzialną za dostawę. W razie potrzeby służymy pomocą.

4.1 Warunki otoczenia

- 1. Falownik należy montować w miejscach niedostępnych dla dzieci.
- 2. Falownik należy montować w miejscach, w których nie można go przypadkowo dotknąć.
- Należy zapewnić dobry dostęp do falownika na potrzeby montażu i ewentualnego serwisowania.
- Temperatura otoczenia nie powinna przekraczać 40°C, aby zapewnić optymalne działanie urządzenia.
- Należy przestrzegać podanych poniżej minimalnych odległości od ścian, innych falowników albo obiektów, aby zapewnić odpowiednie odprowadzanie ciepła.

Strona Minimalna odległość (w mi			
nad	300		
pod	500		
po bokach	200		

Odległości przy jednym falowniku

Odległości przy kilku falownikach

 Aby uniknąć spadku mocy spowodowanego przegrzaniem, nie należy montować falownika w miejscu umożliwiającym długotrwałe wystawienie urządzenia na bezpośrednie światło słoneczne.

Instrukcja montażu i eksploatacji

7. Aby zapewnić optymalne działanie i przedłużyć okres użytkowania urządzenia, należy unikać wystawiania falownika na bezpośrednie światło słoneczne, deszcz i śnieg.

- 8. Sposób, miejsce i powierzchnia montażu muszą być dopasowane do masy i wymiarów falownika.
- 9. W przypadku montażu na terenie zabudowy mieszkaniowej zalecamy montaż falownika na stabilnej powierzchni. Nie zaleca się montażu na płytach gipsowych i podobnych materiałach z powodu słyszalnych drgań generowanych podczas eksploatacji.
- 10. Nie umieszczać żadnych przedmiotów na falowniku. Nie zakrywać falownika.

4.2 Wybór miejsca montażu

Zagrożenie życia na skutek pożaru albo wybuchu

- Nie należy montować falownika w miejscach, w których znajdują się wysoce łatwopalne materiały albo gazy.
- Nie należy montować falownika w obszarach zagrożonych wybuchem.

- 1. Falownik montować w pionie albo w pozycji pochylonej do tyłu o maksymalnie 15°.
- 2. Nie montować falownika w pozycji pochylonej do przodu ani na boki.
- 3. Nie montować falownika w pozycji poziomej.
- 4. Falownik montować na wysokości wzroku, aby ułatwić obsługę i odczyt wyświetlacza.
- 5. Panel złączy elektrycznych musi być skierowany w dół.

OSTRZEŻENIE

Ryzyko obrażeń przy podnoszeniu albo w przypadku upuszczenia falownika

Maksymalna masa urządzenia ASW TLC to 24 kilogramy. W przypadku nieprawidłowego podnoszenia falownika albo jego upuszczenia podczas transportu albo podczas zawieszania urządzenia na uchwycie ściennym czy też zdejmowania z uchwytu istnieje ryzyko odniesienia obrażeń.

• Zachować ostrożność podczas transportu i podnoszenia falownika.

Ryzyko obrażeń na skutek uszkodzenia kabli

W ścianie mogą być poprowadzone kable elektryczne albo inne przewody doprowadzające media (np. gaz, wodę).

 Należy sprawdzić, czy w ścianie nie są poprowadzone przewody, które mogłyby zostać uszkodzone podczas wiercenia otworów.

Sposób postępowania podczas montażu:

 Przyłóż uchwyt do ściany jako szablon, aby wyznaczyć miejsca wiercenia otworów, a następnie wywierć 4 otwory (średnica:10 mm) na głębokość ok. 70 mm. Podczas wiercenia otworów trzymaj wiertło prostopadle do ściany i utrzymuj je w stabilnej pozycji, aby nie nawiercać otworów pod kątem.

 Po usunięciu z otworów pyłu i innych przedmiotów umieść w otworach 4 kotwy ścienne, a następnie przymocuj uchwyt ścienny do ściany, używając śrub z łbem sześciokątnym, dostarczonych w zestawie z falownikiem.

 Przytrzymaj falownik za uchwyty na rogach i przymocuj do uchwytu ściennego w pozycji lekko pochylonej w dół.

4. Sprawdź zewnętrzne zaczepy po obu stronach falownika, aby upewnić się, że jest dobrze zamocowany.

 Przymocuj zewnętrzne zaczepy radiatora z obu stron uchwytu ściennego śrubami M5. (rodzaj grotu: T25, moment obrotowy: 2,5 Nm).

Jeśli w miejscu montażu wymagany jest drugi przewód ochronny, falownik należy uziemić i zabezpieczyć, aby uniemożliwić zdjęcie go z uchwytu ściennego (patrz punkt 5.4.3 "Podłączanie drugiego uziemienia ochronnego").

5.1 Bezpieczeństwo

NIEBEZPIECZEŃSTWO

Zagrożenie życia na skutek wysokiego napięcia w zespole modułów fotowoltaicznych

Pod wpływem promieni słonecznych zespół modułów fotowoltaicznych generuje niebezpieczne napiącie prądu stałego, występujące na przewodach prądu stałego oraz podzespołach falownika będących pod napięciem Dotknięcie przewodów prądu stałego albo podzespołów będących pod napięciem może spowodować zgon na skutek porażenia prądem. Jeśli przewody prądu stałego zostaną odłączone od falownika będącego pod napięciem, może dojść do zajrzenia łuku elektrycznego, który może spowodować porażenie prądem i oparzenia.

- Nie dotykaj odsłoniętych końcówek kabli.
- Nie dotykaj przewodów prądu stałego.
- Nie dotykaj żadnych podzespołów falownika będących pod napięciem.
- Montaż, podłączenie i rozruch falownika należy zlecać wyłącznie osobom posiadającym odpowiednie kwalifikacje i umiejętności.
- Ewentualne usterki usuwać mogą wyłącznie osoby posiadające odpowiednie kwalifikacje.
- Przed rozpoczęciem prac przy falowniku należy odłączyć go od wszelkich źródeł zasilania, jak opisano w rozdziale 8.

OSTRZEŻENIE

Ryzyko obrażeń na skutek porażenia prądem

- Zewnętrzny przewód ochronny jest podłączony do zacisku uziemiającego falownika za pośrednictwem złącza prądu przemiennego. Sprawdzić, czy połączenie wykonano prawidłowo.
- Przy podłączaniu urządzenia należy najpierw podłączyć złącze prądu przemiennego, aby zapewnić prawidłowe uziemienie falownika, a następnie podłączyć wejścia prądu stałego.
- Przy odłączaniu urządzenia należy najpierw odłączyć wejścia prądu stałego, a następnie odłączyć złącze prądu przemiennego
- W żadnym wypadku nie wolno podłączać wejść prądu stałego, gdy złącze prądu przemiennego jest odłączone.
- Wszelkie instalacje elektryczne muszą być wykonane zgodnie z krajowymi zasadami i normami w zakresie okablowania oraz z miejscowymi przepisami.

5.2 Układ instalacji w przypadku jednostek bez wbudowanego przełącznika prądu stałego

Zgodnie z krajowymi normami albo przepisami może być wymagane, aby instalacje fotowoltaiczne były wyposażone w zewnętrzny przełącznik prądu stałego po stronie prądu stałego. Przełącznik prądu stałego musi zapewnić bezpieczne odłączanie napięcia jałowego zespołu modułów fotowoltaicznych z rezerwą bezpieczeństwa 20%. Należy zamontować przełącznik prądu stałego w każdym zespole modułów fotowoltaicznych, aby odizolować stronę prądu stałego falownika. Zalecamy wykonanie następującego podłączenia elektrycznego:

5.3 Widok panelu złączy

Element	Opis				
А	Przełącznik prądu stałego (opcjonalny): do załączania albo odłączania				
	obciążenia instalacji fotowoltaicznej				
В	Wejście prądu stałego 1: gniazda wtykowe do podłączenia łańcuchów				
	fotowoltaicznych				
С	Interfejs RS485/DRED (opcjonalny): do podłączenia urządzenia do				
	monitorowania				
D	Interfejs USB (DSP): do aktualizacji oprogramowania sprzętowego				
E	Interfejs USB (HMI): do aktualizacji oprogramowania				
F	Interfejs RS485/ETH (opcjonalny): do podłączenia urządzenia do				
	monitorowania				
G	Wyjście prądu przemiennego: gniazdo wtykowe do podłączenia do sieci				
	elektroenergetycznej				
Н	Interfejs Exp Ctrl: do podłączenia inteligentnego licznika				
I	ANT (opcjonalny): do podłączenia anteny w celu komunikacji przez Wi-Fi				
J	GPRS (opcjonalny): do podłączenia klucza USB w celu komunikacji przez GPRS				

*Jeśli konieczne jest zamykanie przełącznika prądu stałego, zalecane wymiary zawiasu na kłódkę to 4 mm na 6 mm

5.4 Podłączanie prądu przemiennego

5.4.1 Warunki podłączenia prądu przemiennego

Wymagania dotyczące kabli

Urządzenie podłącza się do sieci elektroenergetycznej za pośrednictwem 5 przewodów (L1, L2,

L3, N i PE). Zalecamy następujące parametry miedzianego przewodu wielożyłowego.

Element	Opis	Wartość		
А	Średnica zewnętrzna	12–21 mm		
В	Przekrój poprzeczny przewodu	2,5–6 mm ²		
С	C Długość odcinka z usuniętą izolacją żyły ok. 9 mm			
D	Długość odcinka z usuniętym płaszczem zewnętrznym na	ok 72 mm		
kablu prądu przemiennego ok. 72 mm				
Izolowany przewód ochronny (PE) musi być o 2 mm dłuższy od przewodów L i N.				

W przypadku dłuższych odcinków należy stosować kable o większym przekroju poprzecznym.

Budowa kabla

Wymiary przekroju poprzecznego przewodu należy dobrać tak, aby uniknąć strat mocy w kablach przekraczającej 1% znamionowej mocy wyjściowej.

Maksymalne długości kabli w przypadku poszczególnych przekrojów poprzecznych przedstawiono w poniższej tabeli:

Przekrój poprzeczny		Maksymalna długość kabla				
przewodu	TLC3000	TLC4000	TLC5000	TLC6000	TLC8000	TLC10000
4 mm²	81 m	65 m	53 m	43 m	34 m	27 m
6 mm²	124 m	98 m	80 m	65 m	51 m	41 m

Wymagany przekrój poprzeczny przewodu zależy od mocy znamionowej falownika,

temperatury otoczenia, sposobu poprowadzenia, rodzaju kabla, strat mocy w kablu,

wymogów dotyczących montażu urządzenia obowiązujących w miejscu jego montażu.

5.4.2 Podłączenie do sieci elektroenergetycznej

Budowa wtyku przyłączeniowego prądu przemiennego

	Element	Opis				
Wyposażenie dodatkowe	A	Nakładka z tworzywa sztucznego (ułatwia uchwycenie elementu, należy zdjąć ją po zamocowaniu wtyku)				
	В	Gniazdo				
Wtyk	С	Przejściówka				
nrzyłaczeniowy		Pierścień	Grubszy pierścień uszczelniający jest odpowiedni dla kabli o średnicy 12–18 mm			
prądu	D*	uszczelniając y	zczelniając Cieńszy pierścień uszczelniający jest odpowiedni dla kabli o średnicy 16–21 mm			
pizeimennego	E	Element łącząc	9			
	F	Nakrętka obrotowa				

* W zestawie wtyku przyłączeniowego prądu przemiennego znajdują się dwa pierścienie uszczelniające. Należy wybrać pierścień dopasowany do zewnętrznej średnicy kabla.

Sposób postępowania:

- 1. Ustaw wyłącznik prądu przemiennego w położeniu wyłączenia i zabezpiecz go przed ponownym załączeniem.
- Umieść nakrętkę obrotową, element łączący i pierścień uszczelniający na kablu prądu przemiennego.

- 3. Zdejmij płaszcz zewnętrzny kabla (72 mm) i izolację przewodu (9 mm).
- Włóż odsłonięte przewody do odpowiednich zacisków końcówek kablowych i zaciśnij je używając zaciskarki.

Uszkodzenie falownika spowodowane nieprawidłowym podłączeniem przewodów

- Sprawdź, czy rodzaje przewodów odpowiadają oznaczeniom zacisków na gnieździe.
- Połącz ze sobą gniazdo, adapter i nakrętkę obrotową. Nałóż nakładkę z tworzywa sztucznego na gniazdo i ściśnij, a następnie przykręć przejściówkę i nakrętkę obrotową w sposób pokazany poniżej momentem 4 Nm.

 Włóż wtyk przyłączeniowy prądu przemiennego do gniazda w falowniku, a następnie przykręć gniazdo, obracając je zgodnie z ruchem wskazówek zegara, aż zablokuje je zatrzask.

5.4.3 Podłączanie drugiego uziemienia ochronnego

W razie konieczności zacisk uziemiający można wykorzystać do podłączenia drugiego przewodu ochronnego jako przewodu wyrównawczego.

Sposób postępowania

- Wyjmij zacisk z otworem w kształcie litery "O" (OT6–5), włóż do niego odsłonięty przewód uziemiający i zaciśnij styk.
- Ustaw zacisk z przewodem ochronnym i podkładkę uziemiającą w jednej osi na śrubie.
 Ząbki podkładki uziemiającej muszą być skierowane w stronę radiatora.
- Włóż śrubę do otworu w zewnętrznym zaczepie radiatora i mocno przykręć ją do uchwytu ściennego (typ wkrętaka: T25, moment obrotowy: 2,5 Nm).

Informacje o częściach uziemiających:

Element	Opis
1	Radiator
2	Zacisk z otworem w kształcie litery "O" (OT6–5) z
	przewodem ochronnym
3	Śruba M5×12

5.4.4 Zabezpieczenie różnicowoprądowe

Falownik wyposażono w obsługujący wszystkie biegunowości moduł monitorowania prądu różnicowego (RCMU) z wbudowanym czujnikiem prądu różnicowego, spełniający wymogi normy DIN VDE 0100–712 (IEC60364–7-712:2002).

W związku z tym nie jest konieczne stosowanie zewnętrznego wyłącznika różnicowoprądowego (RCD). Jeśli zgodnie z miejscowymi przepisami konieczny jest montaż wyłącznika różnicowoprądowego, można zamontować wyłącznik różnicowoprądowy typu A albo B jako dodatkowe zabezpieczenie.

RCMU wykrywa stały i przemienny prąd resztkowy. Wbudowany czujnik prądu różnicowego wykrywa różnice natężenia prądu w przewodach neutralnych i liniowych. W przypadku nagłego wzrostu różnicy natężenia prądu falownik rozłącza połączenie z siecią elektroenergetyczną. Działanie RCMU sprawdzono zgodnie z normą IEC 62109–2.

^J Montaż zewnętrznego wyłącznika różnicowoprądowego (RCD)

Jeśli w układzie o topologii TT albo TN-S konieczny jest zewnętrzny wyłącznik różnicowoprądowy (RCD), należy zamontować wyłącznik różnicowoprądowy, którego prąd różnicowy zadziałania wynosi co najmniej 100 mA.

Każdy podłączony falownik wymaga 100 mA znamionowego prądu różnicowego. Wartość znamionowego prądu różnicowego wyłącznika różnicowoprądowego musi wynosić co najmniej równowartość sumy znamionowych prądów resztkowych w podłączonych falownikach. Oznacza to, że jeśli podłączone są na przykład 2 falowniki beztransformatorowe, wartość znamionowego prądu resztkowego wyłącznika różnicowoprądowego musi wynosić co najmniej 200 mA.

5.4.5 Kategoria przepięcia

i

Falownik można stosować w sieciach elektroenergetycznych kategorii III albo niższej zgodnie z normą IEC 60664-1. Oznacza to, że urządzenie może być na stałe podłączone z miejscem przyłączenia budynku do sieci elektroenergetycznej. W przypadku montażu z przewodami rozprowadzonymi na zewnątrz na długich odcinkach, należy zastosować dodatkowe środki mające na celu ograniczenie przepięć, aby obniżyć kategorię przepięcia z IV do III. 28 Instrukcja montażu i eksploatacji

5.4.6 Wyłącznik prądu przemiennego

Zagrożenie życia na skutek pożaru

Każdy falownik należy zabezpieczyć oddzielnym wyłącznikiem prądu przemiennego, aby możliwe było bezpieczne odłączenie falownika.

Pomiędzy wyłącznikiem prądu przemiennego a falownikiem nie należy umieszczać żadnych odbiorników elektrycznych. Dobór mocy znamionowej wyłącznika prądu przemiennego zależy od konstrukcji przewodu (pola przekroju poprzecznego), rodzaju kabla, sposobu poprowadzenia przewodów, temperatury otoczenia, prądu znamionowego falownika itp. Zastosowanie wyłącznika prądu przemiennego o niższych parametrach znamionowych może być konieczne z powodu samoczynnego samonagrzewania się wyłącznika albo wystawienia go na wysoką temperaturę.

Maksymalny prąd wyjściowy falowników i zalecane parametry znamionowe wyłącznika prądu przemiennego są podane w poniższej tabeli.

Rodzaj	Maksymalne	Zalecane parametry znamionowe wyłącznika prądu
falownika	natężenie prądu	przemiennego
	wyjściowego	
TLC3000	5,2 A	
TLC4000	6,0 A	16 A
TLC5000	7,5 A	A 91
TLC6000	9,1 A	
TLC8000	12,1 A	20 A
TLC10000	15,2 A	20 A

5.5 Przyłącze prądu stałego

Zagrożenie życia na skutek wysokiego napięcia w falowniku

• Przed podłączeniem generatora fotowoltaicznego sprawdź, czy przełącznik prądu stałego jest

wyłączony i zabezpieczony przed ponownym załączeniem.

Nie odłączaj przewodów prądu stałego pod napięciem.

5.5.1 Wymogi wstępne do podłączenia prądu stałego

Informacje dotyczące stosowania trójników

Trójniki nie mogą znajdować się w miejscu wyraźnie widocznym albo łatwo dostępnym w

bezpośrednim sąsiedztwie falownika.

- Obwodu prądu stałego nie należy przerywać trójnikami.
- Aby przerwać obwód prądu stałego należy odłączyć falownik od wszystkich źródeł zasilania.

•Wymogi dotyczące modułów fotowoltaicznych dla danego wejścia MPP:

taki sam typ

i

- taka sama liczba modułów fotowoltaicznych połączonych szeregowo
- identyczne ustawienie w osi
- identyczne pochylenie
- Należy przestrzegać wartości granicznych napięcia wejściowego i prądu wejściowego falownika (patrz punkt 10.1 "Parametry wejścia prądu stałego").
- W najzimniejszym dniu według danych statystycznych napięcie jałowe w zespole modułów fotowoltaicznych nie może nigdy przekraczać maksymalnego napięcia wejściowego falownika.
- Przewody połączeniowe modułów fotowoltaicznych muszą być wyposażone w złącza.
- Dodatnie przewody połączeniowe modułów fotowoltaicznych muszą być wyposażone w złącza dodatnie prądu stałego. Ujemne przewody połączeniowe modułów fotowoltaicznych muszą być wyposażone w złącza ujemne prądu stałego.

5.5.2 Montaż złącza prądu stałego

• Nie dotykaj przewodów prądu stałego.

Montaż złącza prądu stałego należy wykonać w sposób opisany poniżej. Należy przestrzegać prawidłowej biegunowości. Złącza prądu stałego oznaczono symbolami "+" i "–".

Parametry kabla:

Należy zastosować kabel typu PV1-F, UL-ZKLA albo USE2 o następujących parametrach:

- ♦ Średnica zewnętrzna: 5–8 mm
- Przekrój poprzeczny żyły: 2,5–6 mm²
- Liczba pojedynczych żył: co najmniej 7
- Napięcie nominalne: co najmniej 1000 V

Montaż każdego złącza prądu stałego należy wykonać w następujący sposób:

1. Zdejmij izolację z 12 mm odcinka przewodu.

 Włóż odsłoniętą końcówkę przewodu do złącza prądu stałego. Sprawdź, czy biegunowość odsłoniętej końcówki przewodu i złącza prądu stałego jest taka sama.

3. Dociśnij zacisk, aż usłyszysz odgłos zatrzaśnięcia.

4. Sprawdź, czy przewód jest prawidłowo umieszczony:

Νεζαπαί	Działanie
Jeśli poszczególne żyły przewodu są widoczne w	•Przejdź do kroku 5.
komorze zacisku, kabel jest umieszczony	
prawidłowo.	
Jeśli poszczególne przewody nie są widoczne w	•Zwolnij zacisk. W tym celu włóż do zacisku płaski
komorze, kabel nie jest umieszczony prawidłowo.	wkrętak (szerokość końcówki: 3,5 mm) i otwórz,
	podważając go.

5. Załóż nakrętkę obrotową na gwint i dokręć (moment obrotowy: 2 Nm).

5.5.3 Demontaż złączy prądu stałego

NIEBEZPIECZEŃSTWO

Zagrożenie życia na skutek wysokiego napięcia na przewodach prądu stałego

Pod wpływem promieni słonecznych zespół modułów fotowoltaicznych generuje niebezpieczne napięcie prądu stałego, występujące na przewodach prądu stałego. Dotknięcie przewodów prądu stałego może spowodować zgon na skutek porażenia prądem.

- Zakryj moduły fotowoltaiczne.
- Nie dotykaj przewodów prądu stałego.
- 1. Ustaw przełącznik prądu stałego falownika w położeniu "O".
- 2. Odkręć nakrętkę obrotową.

 Aby zwolnić złącze prądu stałego, włóż do bocznego zatrzasku płaski wkrętak (szerokość końcówki: 3,5 mm) i otwórz, podważając go.

4. Ostrożnie wyciągnij złącze prądu stałego.

5. Zwolnij zacisk. W tym celu włóż do zacisku płaski wkrętak (szerokość końcówki: 3,5 mm) i otwórz, podważając go.

6. Wyjmij kabel.

5.5.4 Podłączanie zespołu modułów fotowoltaicznych

INFORMACJA

Uszkodzenie falownika spowodowane przepięciem

Jeśli napięcie w łańcuchach fotowoltaicznych przekracza maksymalne wejściowe napięcie prądu stałego falownika, może dojść do zniszczenia falownika na skutek przepięcia. Powoduje to unieważnienie wszystkich roszczeń gwarancyjnych.

- Nie należy podłączać łańcuchów fotowoltaicznych, w których napięcie jałowe przekracza maksymalne wejściowe napięcie prądu stałego falownika.
- Należy sprawdzić konstrukcję instalacji fotowoltaicznej
- Sprawdź, czy dany wyłącznik prądu przemiennego jest wyłączony i zabezpiecz go przed ponownym załączeniem.
- Sprawdź, czy przełącznik prądu stałego jest wyłączony i zabezpiecz go przed ponownym załączeniem.
- 3. Sprawdź, czy w łańcuchach fotowoltaicznych nie występuje doziemienie.
- 4. Sprawdź, czy biegunowość złącza prądu stałego jest właściwa. Jeśli złącze prądu stałego jest połączone z kabel prądu stałego o niewłaściwej biegunowości, należy ponownie wykonać montaż złącza prądu stałego. Kabel prądu stałego musi zawsze mieć taką samą biegunowość, jak złącze prądu stałego.
- Napięcie jałowe w łańcuchu fotowoltaicznym nie może przekraczać maksymalnego wejściowego napięcia prądu stałego falownika.
- 6. Podłącz zmontowane złącza prądu stałego do falownika, aż usłyszysz odgłos zatrzaśnięcia.

INFORMACJA

Uszkodzenie falownika spowodowane wnikaniem wilgoci i pyłu

Zaślep szczelnie nieużywane wejścia prądu stałego zaślepkami, aby do falownika nie dostały się wilgoć i pył.

- Sprawdź, czy wszystkie złącza prądu stałego są dobrze uszczelnione.
- 7. Włóż zaślepki dostarczone z urządzeniem do nieużywanych złączy prądu stałego.
- W nieużywanych złączach prądu stałego zamknij zacisk i dokręć nakrętkę obrotową do gwintu.

• Włóż zaślepkę do złącza prądu stałego.

· Dokręć złącze prądu stałego (moment obrotowy: 2 Nm).

· Włóż złącza prądu stałego z zaślepkami do odpowiednich wejść prądu stałego w falowniku.

6 Łączność

6.1 Monitorowanie instalacji przez interfejs RS485

Falownik ma wbudowany interfejs łączności RJ45. Falowniki można monitorować łącząc kilka z nich szeregowo z magistralą RS485, a na koniec podłączając je do modułu AiManager. Całkowita długość kabla sieciowego nie powinna przekraczać 1000 m. Budowę układu monitorowania falowników przedstawiono poniżej:

Moduł AiManager łączy się z falownikiem poprzez interfejs RJ45, a z routerem poprzez sieć Ethernet. Następnie falownik można podłączyć do chmurowej platformy zdalnego monitorowania "AiSWEI Cloud". Umożliwia to monitorowanie trybu pracy albo parametrów wytwarzania energii na smartfonie albo komputerze stacjonarnym. Platforma chmurowa "AiSWEI Cloud" znajduje się pod adresem <u>www.*aisweicloud*.com</u> Układ pinów w interfejsie RJ45 przedstawiono w poniższej tabeli:

Pin1 TX_RS485A	DIN1>9
Pin2TX_RS485B	
Pin3RX_RS485A	
Pin4GND	
Pin5GND	
Pin6RX_RS485B	GNIAZDO RJ45
Pin7+7 V	
Pin8+7 V	

Szczegółowe informacje znajdują się w instrukcji obsługi modułu AiManager.

OSTRZEŻENIE

Do nawiązania łączności kablowej po interfejsie RS485 pomiędzy falownikiem a modułem AiManager

wymagany jest ekranowany kabel CAT-5 albo kabel wyższej kategorii. Układ pinów na obydwu końcach

przewodu powinien spełniać wymogi normy TIA/EIA568A albo 568B.

Kabel używany na zewnątrz powinien być zabezpieczony przed promieniowaniem UV.

INFORMACJA

Uszkodzenie falownika spowodowane wnikaniem wilgoci i pyłu

Jeżeli wtyki RJ45 nie zostały zamontowane albo zostały zamontowane niewłaściwie, falownik ulegnie

zniszczeniu pod wpływem wilgoci i pyłu, które dostaną się do portu RJ45 i doprowadzą do jego korozji.

Powoduje to unieważnienie wszystkich roszczeń gwarancyjnych.

Sprawdź, czy wtyk RJ45 został prawidłowo zamontowany i mocno osadzony.

Podłączanie wtyku RJ45:

1. Odkręć nakrętkę z gniazda keystone RJ45.

2. Wyciągnij wtyk RJ45 dostarczony wraz z falownikiem i rozmontuj go.

Element	Opis
А	Nakrętka obrotowa
В	Uszczelnienie
С	Gwintowana tuleja (z uszczelką)

3. Przeciągnij kabel sieciowy przez elementy wtyku RJ45 w sposób przedstawiony poniżej.

 Włóż kabel sieciowy do gniazda keystone RJ45, a następnie ręcznie mocno dokręć gwintowaną tuleję do gniazda RJ45.

 Wciśnij uszczelkę do gwintowanych tulei i ręcznie mocno dokręć do niej nakrętkę obrotową.

Demontaż wtyku RJ45:

1. Odkręć nakrętkę obrotową.

2. Odkręć gwintowaną tuleję.

 Wyciągnij kabel sieciowy, a następnie ręcznie dokręć nakrętkę do gniazda keystone RJ45.

Użytkownik może monitorować falownik za pośrednictwem wbudowanego modułu sieci Ethernet (element opcjonalny). Poniżej przedstawiono schemat połączenia falownika z Internetem za pośrednictwem kabla sieciowego.

Możliwe przyczyny awarii łącza komunikacyjnego związane z zamkniętym

Dane są wysyłane do chmury AiSWEI Cloud przez porty 6655 \sim 6660. Porty te muszą być otwarte, inaczej moduł sieci Ethernet nie będzie mógł połączyć się z chmurą AiSWEI Cloud i przesyłać danych.

Sposób połączenia routera z portem sieci Ethernet modułu Ethernet za pomocą kabla sieciowego opisano w punkcie 6.1.

Falownik automatycznie pobiera adres IP z routera poprzez DHCP i wyświetla go na wyświetlaczu. Czas oczekiwania na połączenie z siecią zależy od parametrów łączności sieciowej.

İ

portem

6.3 Monitorowanie systemu przez sieć Wi-Fi

Użytkownik może monitorować falownik za pośrednictwem wbudowanego modułu sieci Ethernet z modułem Wi-Fi (element opcjonalny). Poniżej przedstawiono schemat połączenia falownika z Internetem przez sieć Wi-Fi.

Montaż anteny:

- 1. Wyjmij antenę dostarczoną z urządzeniem.
- 2. Wyjmij zaślepkę z portu Wi-Fi.
- Ręcznie wkręć antenę do portu Wi-Fi. Sprawdź, czy antena jest prawidłowo podłączona.

 Otwórz stronę WLAN na urządzeniu mobilnym albo laptopie. Zostanie wyświetlony nowy punkt dostępu o nazwie AISWEI -XXXX

Uwaga: "XXXX" oznacza cztery ostatnie cyfry identyfikatora rejestru (rys. A).

 Połącz się z punktem dostępu na urządzeniu mobilnym albo laptopie, korzystając z hasła "aiswei2019".

					Wifi Connected	
Wiveless Network Connection	0	Home Ethernet Advance	Wirele	ss 🚺	AND-TEST-DLINK615	•
	e				🗹 Obtain an IP address automa	tically
AISWEI-0001	-ati	Wireless Network:			IP Address	192.168.6.35
	-ME	AND-TEST-DLINK615	at	02	Subnet Mask	255.255.255.0
	-01		al.	0		
	-11	AND-TEST-DLINK615	al.	\odot	Gateway	192.168.6.1
	- Inc.	Password	3 🖁	0	MAC Address	EA-B9-76-81-00-01
Open Network and	g Center	Connect 4 Cancel	h.	0	Obtain DNS server address a	utomatically
		THE REPORT	- 4	0	DNS Address	192.168.9.20
Rys. A		Rys. B			Rys. C	

Instrukcja montażu i eksploatacji

- Otwórz przeglądarkę i wpisz "http://160.190.0.1". Zostanie otwarta witryna wewnętrzna. Wybierz router w części [Wireless] (Łączność bezprzewodowa). Zostanie wyświetlone okno dialogowe do wprowadzenia hasła/klucza zabezpieczającego.
- Zmień hasło Wi-Fi na bezpieczne hasło, aby zapewnić jak najwyższy poziom bezpieczeństwa i uniemożliwić dostęp osób nieupoważnionych. Sposób zmiany hasła opisano w podręczniku użytkownika (można go pobrać ze strony AISWEI <u>www.aiswei-tech.com</u>).
- 9. Na tej stronie podane są SSID i hasło do sieci Wi-Fi. SSID i hasło Wi-Fi można zmienić (domyślne hasło to "aiswei2019"). W celu zagwarantowania najwyższego poziomu bezpieczeństwa swojego systemu zmień domyślne hasło "aiswei2019" i nie ujawniaj nikomu nowego hasła. Jeśli domyślne hasło nie zostanie zmienione, istnieje ryzyko uzyskania nieupoważnionego dostępu do systemu przez osoby, które znają domyślne hasło i znajdują się w zasięgu sieci Wi-Fi.

Davi	n (com)		
Devi	Same (551D)	AISWEI-0001	
	Password		0

 Numer seryjny monitora (Monitor SN) i klucz rejestracyjny (registry key) znajdują się na etykietach przymocowanych z boku falownika i na karcie gwarancyjnej.

6.4 Tryby żądania odpowiedzi falownika (DRED)

i

Opis stosowania systemu DRMS

- Ma zastosowanie wyłącznie do AS/NZS4777.2:2015.
- Dostępne są DRM0, DRM5, DRM6, DRM7, DRM8.

Falownik wykrywa i odpowiada na wszystkie obsługiwane polecenia odpowiedzi na żądanie. Tryby odpowiedzi na żądanie opisano poniżej:

Tryb	Żądanie
DRM 0	Uruchom urządzenie odłączające
DRM 1	Nie zużywaj energii
DRM 2	Nie zużywaj energii przy ponad 50% mocy znamionowej
DRM 3	Nie zużywaj energii przy ponad 75% mocy znamionowej ORAZ pobieraj moc bierną, jeśli to możliwe
DRM 4	Zwiększ zużycie energii (z zastrzeżeniem ograniczeń wymuszanych przez pozostałe aktywne DRM)
DRM 5	Nie wytwarzaj energii
DRM 6	Nie wytwarzaj energii przy ponad 50% mocy znamionowej
DRM 7	Nie wytwarzaj energii przy ponad 75% mocy znamionowej ORAZ nie więcej niż 60% mocy biernej
DDMAR	Zwiększ wytwarzanie energii (z zastrzeżeniem ograniczeń wymuszanych przez pozostałe aktywne
	DRM)

Przyporządkowanie pinów gniazda RJ45 do trybów odpowiedzi na żądania przedstawiono w poniższej tabeli:

Podłączanie kabla sieciowego:

INFORMACJA

Uszkodzenie falownika spowodowane wnikaniem wilgoci i pyłu

- Jeśli dławiki kablowe nie zostały poprawnie zamontowane, może dojść do zniszczenia falownika spowodowanego wnikaniem wilgoci i pyłu. Powoduje to unieważnienie wszystkich roszczeń gwarancyjnych.
- Sprawdź, czy dławik kablowy został dobrze dokręcony.
- 1. Odkręć nakrętkę z gniazda keystone DRED.

2. Wyjmij wtyk RJ45, dostarczony w zestawie z falownikiem, a następnie przeciągnij kabel sieciowy przez elementy wtyku RJ45 w sposób przedstawiony poniżej.

 Włóż kabel sieciowy do gniazda keystone DRED, a następnie ręcznie mocno dokręć gwintowaną tuleję do gniazda RJ45.

 Wciśnij uszczelkę do gwintowanych tulei i ręcznie mocno dokręć do niej nakrętkę obrotową.

6.5 Podłączanie inteligentnego licznika (element opcjonalny).

Wymagania dotyczące kabli:

Element	Opis	Wartość
А	Średnica zewnętrzna	między 5 mm a 8 mm
В	Przekrój poprzeczny przewodu	między 0,14 mm² a 1,5 mm²
С	Długość odcinka z usuniętą izolacją żyły	ok. 9 mm
D	Długość odcinka kabla z usuniętym płaszczem zewnętrznym	ok. 30 mm

Odkręć nakrętkę z gniazda przyłączeniowego inteligentnego licznika i przeciągnij kabel przez podzespoły wtyczki przyłączeniowej inteligentnego licznika.

Wprowadź przewody do odpowiednich zacisków śrubowych i zaciśnij; dociśnij pierścień zaciskowy i dokręć nakrętkę obrotową. Włóż wtyczkę przyłączeniową do gniazda i mocno przykręć

6.5 Komunikacja z urządzeniami do monitorowania innych producentów

Falownik obsługuje komunikację z urządzeniami do monitorowania innych producentów, takich jak Metecontrol, Solar-Log itp. Szczegółowy opis sposobu podłączenia przewodów można znaleźć w instrukcji obsługi danego urządzenia do monitorowania innego producenta.

6.6 Aktualizacja oprogramowania sprzętowego za pośrednictwem USB

Jeśli konieczna jest aktualizacja oprogramowania sprzętowego, należy przy pomocy płaskiego wkrętaka (szerokość końcówki: 9 mm) odkręcić wkręty M20 znajdujące się na dole obudowy.

7 Rozruch

INFORMACJA

Ryzyko obrażeń na skutek nieprawidłowego montażu

Zdecydowanie zaleca się przeprowadzenie wstępnych sprawdzeń przed uruchomieniem urządzenia,

aby zapobiec jego ewentualnym uszkodzeniom powstałym na skutek nieprawidłowego montażu.

7.1 Sprawdzenie elektryczne

Przeprowadź najważniejsze sprawdzenia elektryczne w następujący sposób:

Sprawdź przyłącze przewodu ochronnego multimetrem: sprawdź, czy odsłonięta

metalowa powierzchnia falownika jest uziemiona.

Zagrożenie życia na skutek występowania napięcia prądu stałego

- Dotykaj wyłącznie izolacji kabli zespołu modułów fotowoltaicznych.
- Nie dotykaj elementów spodnich ani ramy nieuziemionego zespołu modułów fotowoltaicznych.
- Stosuj środki ochrony indywidualnej, takie jak rękawice elektroizolacyjne.

(2) Sprawdź wartości napięcia prądu stałego: napięcie prądu stałego w łańcuchach

fotowoltaicznych nie może przekraczać dopuszczalnych wartości.

Instrukcja montażu i eksploatacji

- ③ Sprawdź biegunowość napięcia prądu stałego: napięcie prądu stałego musi mieć właściwą biegunowość.
- ④ Sprawdź izolację główną generatora fotowoltaicznego multimetrem: rezystancja izolacji musi być wyższa niż 1 MΩ.

Zagrożenie życia na skutek występowania napięcia prądu przemiennego

- Dotykaj wyłącznie izolacji kabli prądu przemiennego,
- Stosuj środki ochrony indywidualnej, takie jak rękawice elektroizolacyjne,

(5) Sprawdź napięcie w sieci elektroenergetycznej: sprawdź, czy napięcie w sieci elektroenergetycznej w punkcie przyłączenia falownika nie wykracza poza dopuszczalny zakres.

7.2 Sprawdzenie mechaniczne

Aby sprawdzić wodoszczelność falownika, należy przeprowadzić główne sprawdzenia mechaniczne w następujący sposób:

- ① Przy pomocy zaślepek szczelnie zaślepić nieużywane złącza wejścia prądu stałego.
- ②Sprawdź, czy nakrętka niepotrzebnego gniazda keystone RJ45 została prawidłowo dokręcona.
- ③Sprawdź, czy poprawnie zamontowano złącze prądu przemiennego.

7.3 Uruchomienie

Po zakończeniu sprawdzeń elektrycznych i mechanicznych przestaw wyłącznik prądu przemiennego, a następnie rozłącznik prądu stałego do położenia załączenia. Sprawdź, czy wybrano odpowiednie ustawienia bezpieczeństwa dla danego regionu. Falownik uruchamia się automatycznie.

Zwykle urządzenie pracuje w jednym z trzech trybów:

Oczekiwanie: Falownik uruchomi się wyłącznie wtedy, gdy napięcie początkowe łańcuchów fotowoltaicznych ma wartość wyższą od napięcia rozpoczęcia pracy falownika. Gdy napięcie wejściowe przekroczy zakres 180–950 V, falownik pozostanie w trybie oczekiwania i nie może podawać mocy do sieci elektroenergetycznej.

Sprawdzanie: Gdy napięcie początkowe łańcuchów fotowoltaicznych ma wartość wyższą od napięcia rozpoczęcia pracy falownika, falownik od razu sprawdzi warunki zasilania. Jeśli podczas sprawdzania wykryte zostaną nieprawidłowości, falownik przełączy się w tryb "Awaria".

Standardowy: Po wykonaniu sprawdzania falownik przełączy się w tryb "Standardowy" i zacznie podawać moc do sieci elektroenergetycznej.

W okresach słabego nasłonecznienia falownik może ciągle uruchamiać się i wyłączać. Dzieje się tak dlatego, że generator fotowoltaiczny nie wytwarza wystarczającej mocy. Jeśli ten błąd występuje często, skontaktuj się z serwisem.

Szybka diagnostyka

i

Jeśli falownik znajduje się w trybie "Awaria", należy przejść do rozdziału 11 "Rozwiązywanie problemów".

8 Odłączanie falownika od źródeł zasilania

Przed rozpoczęciem prac przy falowniku odłączyć go od wszelkich źródeł zasilania w sposób opisany w niniejszym punkcie. Należy zawsze ściśle przestrzegać podanej kolejności wykonywania czynności.

- 1. Odłącz wyłącznik prądu przemiennego i zabezpiecz go przed ponownym załączeniem.
- 2. Odłącz przełącznik prądu stałego i zabezpiecz go przed ponownym załączeniem.
- 3. Sprawdź przy pomocy miernika prądu, czy w kablach prądu stałego nie ma prądu.
- Zwolnij i odłącz wszystkie złącza prądu stałego. W tym celu włóż płaski wkrętak albo wkrętak kątowy (szerokość końcówki: 3,5 mm) do jednego z bocznych otworów i wyciągnij złącza. Nie ciągnij za kable.

5. Zwolnij i odłącz złącze prądu przemiennego. Przekręć gniazdo w kierunku odwrotnym do ruchu wskazówek zegara, aby je otworzyć.

6. Poczekaj, aż wszystkie diody LED i wyświetlacz wyłączą się.

Rozładowanie kondensatorów w falowniku trwa 5 minut.

• Należy odczekać 5 minut przed rozpoczęciem prac przy falowniku.

9.1 Budowa panelu sterowania

Falownik jest wyposażony w panel sterowania z wyświetlaczem LCD, trzema diodami LED i czterema przyciskami sterowania. Przy pomocy przycisków sterowania można wyświetlać dane i ustawiać parametry falownika.

Element	Opis	
А	Tryb "Standardowy" (zielona dioda LED)	
В	Tryb "Awaria" (czerwona dioda LED)	
С	Tryb "Komunikacja" (dwukolorowa dioda LED)	
D	Wyświetlacz LCD	
E	▼ (przycisk "w dół")	
F	▲ (przycisk "w górę")	
G	ESC (przycisk "Exit")	
Н	← (przycisk "Enter")	

9.2 Diody LED

Falownik jest wyposażony w trzy diody LED: zieloną, czerwoną i dwukolorową. Informują one o różnych trybach pracy urządzenia w następujący sposób:

Zielona dioda LED:

Zielona dioda LED włącza się przy standardowej pracy falownika.

Czerwona dioda LED:

Czerwona dioda LED włącza się, gdy z powodu awarii falownik przestał podawać moc do sieci elektroenergetycznej. Jednocześnie na wyświetlaczu zostanie wyświetlony odpowiedni kod błędu.

Dwukolorowa dioda LED:

Dwukolorowa dioda LED może błyskać na zielono albo na czerwono. Błyska podczas połączenia z innymi urządzeniami, takimi jak AiManager, Solarlog itp. Dioda LED błyska na zielono, gdy moduł AiManager przesyła informacje do falownika, a na czerwono, gdy falownik przesyła informacje do modułu AiManager. Dioda LED będzie świecić na zielono podczas aktualizacji oprogramowania sprzętowego Oprócz trybów pracy falownika na wyświetlaczu mogą być wyświetlane różne komunikaty, które przedstawiono w poniższej tabeli.

Tryb pracy	Kod błędu	Opis	Przyczyny
			Początkowe napięcie instalacji fotowoltaicznej
			znajduje się w zakresie pomiędzy wartością
		Waiting	minimalnego wejściowego napięcia prądu
			stałego falownika a wartością napięcia
			rozpoczęcia pracy falownika.
Uruchamianie			Po stwierdzeniu, że początkowe napięcie
		Charling	instalacji fotowoltaicznej przekracza wartość
		Checking	napięcia rozpoczęcia pracy falownika, falownik
			sprawdza parametry zasilania.
		Poconnact	Falownik sprawdza warunki zasilania po
		Reconnect	usunięciu ostatniego błędu.
Standardow		Normal	Falownik działa normalnie
У		Normal	
	1		Nawiązanie łączności pomiędzy procesorem
	1	SPI Fault	głównym i podrzędnym nie powiodło się.
	r	EEPROM R/W	Odczyt z pamięci EEPROM albo zapis do
	2	Fault	pamięci EEPROM nie powiódł się.
	3	Rly-Check Fault	Przekaźnik wyjściowy jest uszkodzony.
	4		Wstrzykiwanie prądu stałego na wyjściu
	4	DC INJ. High	przekracza dopuszczalną górną granicę.
	o	AC HCT Fault	Nieprawidłowe działanie czujnika prądu
	0		wyjściowego
Awaria	٥	GFCI Fault	Nieprawidłowe działanie obwodu wykrywania
	9		rozłącznika GFCI.
	10	Device Fault	Nieznany błąd
	44	M-S version	Różne wersje oprogramowania sprzętowego w
	11	unmatched	procesorach głównym i podrzędnym.
	22		Częstotliwość w sieci elektroenergetycznej
	33	Fac Fault	wykracza poza dopuszczalny zakres.

	34	Vac Fault	Napięcie w sieci elektroenergetycznej wykracza poza dopuszczalny zakres.
			Nie można wykryć sieci elektroenergetycznej;
			może to być spowodowane brakiem sieci,
	25		odłączeniem urządzenia od sieci,
	35	Utility Loss	uszkodzeniem kabla prądu przemiennego,
			uszkodzeniem bezpiecznika albo działaniem w
			trybie wyspowym.
	36	Ground Fault	Wartość prądu różnicowego przekracza
	50	Ground Full	dopuszczalną górną granicę.
	37	PV Overvoltage	Napięcie łańcuchów fotowoltaicznych
			przekracza dopuszczalną górną granicę.
A			Rezystancja uziemienia izolacji generatora
Awaria	38	ISO Fault	fotowoltaicznego jest poniżej dopuszczalnej
		100 1 001	wartości albo nastąpiła awaria izolacji
			elektrycznej wewnątrz falownika.
	40	Over Temp.	Temperatura wewnętrzna przekracza
-			dopuszczalną wartość.
		Vac differs	Procesory główny i podrzędny wykryły różne
	41	for M-S	wartości napięcia w sieci
			elektroenergetycznej.
		Fac differs for M-S	Procesory główny i podrzędny wykryły różne
	42		wartości częstotliwości w sieci
			elektroenergetycznej.
	43	Ground I differs	Procesory główny i podrzędny wykryły różne
		for M-S	wartości prądu różnicowego.
	ЛЛ	DC Inj. differs	Procesory główny i podrzędny wykryły różne
		for M-S	wartości wstrzykiwanego prądu stałego.
	46	High DC Bus	Napięcie szyny prądu stałego przekracza
			dopuszczalną górną granicę.
		10 min Grid	Odchylenie od średniego napięcia w sieci
	48	Overvoltage	elektroenergetycznej w czasie dziesięciu minut
			przekracza ustaloną bezpieczną wartość
	61	DRMS (S9 Open)	Błąd łączności z DRMS

62	DRMS (S0 Close)	DRMS żąda odłączenia urządzenia
64	PV input mode set Fault	Ustawiony tryb wejściowy instalacji fotowoltaicznej niezgodny z faktycznym podłączeniem systemu

Na ekranie LCD można odczytać ostatnich 10 komunikatów o wykrytych błędach wraz z datami dotyczących zabezpieczenia sieci i systemu. Przerwa w doprowadzeniu napięcia zasilania trwająca ≤3 s nie powoduje skasowania zgłoszeń błędów (zgodnie z VDE-AR-N 4105).

Błędy "ISO Fault" (kod błędu 38) i "Ground Fault" (kod błędu 36) uruchamiają alarm dźwiękowy. Dzieje się tak tylko wtedy, gdy dotyczy to bezpieczeństwa według normy AU AS 4777.2.

9.4.1 Budowa menu

Struktura menu pomaga przy przechodzeniu do poszczególnych ekranów z informacjami i ustawieniami.

9.4.2 Strona początkowa

W momencie rozruchu falownika na wyświetlaczu LCD najpierw wyświetlana jest strona początkowa, na której wyświetlana jest informacja o obowiązującej normie bezpieczeństwa. Strona będzie widoczna przez ok. 5 sekund, a następnie automatycznie przełączy się na stronę główną.

9.4.3 Strona odblokowywania

Gdy zgaśnie podświetlenie wyświetlacza LCD, można go aktywować naciskając dowolny przycisk. Należy nacisnąć po kolei przyciski ▼ i "Esc", aby odblokować wyświetlacz i otworzyć stronę główną.

9.4.4 Strona główna

Na stronie głównej są wyświetlane najważniejsze informacje dotyczące pracy falownika, takie jak moc wyjściowa w czasie rzeczywistym, produkcja energii w ujęciu dobowym, kod błędu oraz wykres mocy.

Jeśli przez 30 sekund nie zostanie naciśnięty żaden przycisk, wyświetlacz LCD przejdzie w tryb czuwania i automatycznie przełączy się na stronę główną, a podświetlenie zgaśnie.

Element	Opis
А	Data i godzina
В	Moc wyjściowa
С	Wytwarzanie energii w ujęciu dobowym
D	Wytwarzanie energii łącznie
E	Kod błędu*, patrz rozdział 9.3
F	Czas sprawdzenia
G	Tryb pracy: 🖾 oczekiwanie, 🍽 normalne działanie, 🕅 awaria
Н	Wykres mocy wyjściowej od 4:00 do 22:00
I	Wskaźnik włączonego ograniczenia obciążenia układu

*Temperatura pracy falownika nie może być niższa od -25°C. Gdy temperatura spada poniżej -25°C, falownik przechodzi w tryb awarii i przerywa wytwarzanie energii. Na wyświetlaczu LCD zostanie wyświetlony komunikat o błędzie "Temp. under -25°C".

9.4.5 Informacje o pracy urządzenia

Bieżące parametry robocze strony prądu stałego i prądu przemiennego falownika wyświetlane są odpowiednio na jednej z dwóch stron. Można przechodzić między tymi dwiema stronami, naciskając przyciski ▲ albo ▼.

Element	Opis
А	Napięcie w sieci elektroenergetycznej
В	Współczynnik mocy
С	Częstotliwość w sieci elektroenergetycznej
D	Prąd wyjściowy
E	Wyprzedzenie albo opóźnienie fazowe
F	Liczba godzin pracy urządzenia w bieżącej dobie
G	Napięcie wejściowe prądu stałego
н	Moc wejściowa prądu stałego modułu śledzącego MPP 1
I	Wejściowy prąd stały
J	Moc wejściowa prądu stałego modułu śledzącego MPP 2

9.4.6 Menu główne

Aby przejść do menu głównego ze strony głównej, naciśnij przycisk 4.

Naciśnij przycisk ▼ albo ▲, aby wybrać pozycję z menu.

Naciśnij przycisk 斗, aby potwierdzić.

Naciśnij przycisk "ESC", aby powrócić do strony głównej.

	Menu
Statistics	
Event Log	
Settings	
Device Info	

9.4.7 Statystyki

Za pomocą przycisku ▲ albo ▼ wybierz pozycję "Statistics" z głównego menu, a następnie

naciśnij przycisk 🚽, aby przejść do statystyki.

Za pomocą przycisków ▲ albo ▼ wybierz "Daily", "Monthly" albo "Yearly".

Naciśnij przycisk 🚽, aby potwierdzić.

Naciśnij przycisk 🔺 jednokrotnie, aby wyświetlić poprzedni zapis archiwalny.

Naciśnij przycisk 🛦 jednokrotnie, aby wyświetlić kolejny zapis archiwalny.

Naciśnij przycisk "ESC", aby powrócić do głównego menu.

Instrukcja montażu i eksploatacji

	Statistics	09/11/2013	Day Statistics
Days		Etoday	0.0 KWh
Months		Peak	0 W
Years		Runtime	0 h

9.4.8 Dziennik zdarzeń

Za pomocą przycisku ▲ albo ▼ wybierz pozycję "Event Log" z głównego menu, a następnie

naciśnij przycisk *d*, aby przejść do dziennika zdarzeń.

Używając przycisku ▲ albo ▼ przejrzyj dziennik zdarzeń.

Naciśnij przycisk "ESC", aby powrócić do głównego menu.

			Event	Logs	
A →	[1]	12/09/2013	08:45	E12	← B
	[2]	11/09/2013	17:23	E03	
	[3]	10/08/2013	15:23	E43	
	[4]	07/07/2013	13:23	E45	
	[5]	02/06/2013	12:23	E01	
	1				

Element	Opis
А	Data i godzina wystąpienia błędu
В	Kod błędu

9.4.9 Ustawianie daty i godziny

Za pomocą przycisku ▲ albo ▼ wybierz pozycję "Setting". Naciśnij przycisk ↓, aby przejść do ustawień. Następnie wybierz "Basic Setting" i naciśnij przycisk ↓, aby przejść do ustawień podstawowych. Za pomocą przycisku ▼ albo ▲ wybierz "Date&Time Setting" i naciśnij przycisk ↓, aby potwierdzić. Za pomocą przycisku ▲ albo ▼ ustaw po kolei rok, miesiąc, dzień, godzinę i minuty. Naciśnij przycisk ↓, aby potwierdzić. Naciśnij przycisk "ESC", aby powrócić do strony "Basic Setting".

9.4.10 Ustawianie języka

Wejdź do podmenu "Basic Setting" i za pomocą przycisku ▼ albo ▲ wybierz "Language

Setting", następnie naciśnij 🚽, aby wejść do ustawień języka.

Za pomocą przycisku ▲ albo ▼ wybierz język.

Naciśnij przycisk 🚽, aby potwierdzić.

Naciśnij przycisk "ESC", aby powrócić do strony "Basic Setting".

	Language
English	
Deutsch	
简体中文	
繁體中文	

9.4.11 Ustawianie kontrastu

Wejdź do podmenu "Basic Setting" i za pomocą przycisku ▼ albo ▲ wybierz "Contrast

Setting", a następnie naciśnij przycisk 🚽, aby wejść do ustawień kontrastu.

Za pomocą przycisku ▲ albo ▼ wybierz kontrast wyświetlacza LCD.

Naciśnij przycisk 🚽, aby zapisać wybór.

Naciśnij przycisk "ESC", aby powrócić do strony "Basic Setting".

9.4.12 Ustawianie parametrów zabezpieczeń

Instrukcja montażu i eksploatacji

Naciśnij przycisk ▲ albo ▼, aby przejść do położenia "Setting" w głównym menu, potem wybierz podmenu "Advanced Setting" i naciśnij przycisk ↓, aby wejść do ustawień zaawansowanych. Następnie zostanie wyświetlone okienko do wprowadzenia hasła. Wprowadź prawidłowe hasło i naciśnij przycisk ↓, aby wejść na stronę ustawień zaawansowanych w podmenu. Po odpowiednie hasło należy zgłosić się do serwisanta. Następnie wybierz pozycję "Safety Setting" i naciśnij przycisk ↓, aby wejść na stronę zabezpieczeń.

Na stronie zabezpieczeń przyciskami ▲ albo ▼ odpowiednio ustaw wybrany parametr i potwierdź wybór, naciskając przycisk ← J, a następnie przejdź do ustawiania kolejnego parametru. Po zakończeniu ustawiania danego parametru naciśnij przycisk ← J. Naciśnij przycisk "ESC", aby anulować zmiany.

	Safety		Safety
Standard: OVP2:	DE VDE-AR-N 4105 265.5 V	OFP2:	54.50 Hz
OVP1: UVP1: UVP2:	185.0 V 255.0 V 180.0 V	OFP1: UFP1: UFP2:	53.50 Hz 47.50 Hz 45.50 Hz
10Min-Mean:	180.5 V		

Parametry zabezpieczeń można ustawiać na dwóch stronach. Po zakończeniu wprowadzania zmian do parametrów na pierwszej stronie system automatycznie przejdzie do drugiej strony.

INFORMACJA

Nieprawidłowe parametry robocze mogą mieć wpływ na bezpieczeństwo sieci

elektroenergetycznej

Domyślne parametry ustawiono zgodnie z miejscowymi przepisami.

Monitorowane wartości graniczne pracy urządzenia można zmieniać wyłącznie za zgodą

operatora sieci elektroenergetycznej.

9.4.13 Ustawianie przeciążenia

Wejdź do podmenu "Advanced Setting" i za pomocą przycisku ▼ albo ▲ wybierz "Overload Setting" i naciśnij ← J, aby wejść do ustawień przeciążenia. Za pomocą przycisku ▲ albo ▼ wybierz "Enable" albo "Disable".

Naciśnij przycisk *,* aby aktywować wybraną opcję.

Naciśnij przycisk "ESC", aby powrócić do strony "Advanced Setting".

Overload
Overload Setting:
Disable
Enable

9.4.14 Regulacja mocy czynnej

Wejdź do podmenu "Advanced Setting" i za pomocą przycisku ▼ albo ▲ wybierz "Active

Power Control", a następnie naciśnij przycisk 斗, aby wejść do regulacji mocy czynnej.

Za pomocą przycisku ▲ albo ▼ wybierz "Enable" albo "Disable".

Naciśnij przycisk 🖊, aby aktywować wybraną opcję.

Naciśnij przycisk "ESC", aby powrócić do strony "Advanced Setting".

9.4.15 Regulacja mocy biernej

Wejdź do podmenu "Advanced Setting" i za pomocą przycisku ▼ albo ▲ wybierz "Reactive Power Control", a następnie naciśnij przycisk ← , aby wejść do regulacji mocy biernej.

Reactive Power Control
PF Enabling
PF Setting

Wybierz pozycję "PF Enabling" i naciśnij przycisk *I*, aby wejść na stronę aktywowania współczynnika mocy.

Następnie za pomocą przycisku ▲ albo ▼ włącz albo wyłącz wybraną opcję.

Naciśnij przycisk 斗, aby wejść do menu regulacji mocy biernej.

Wybierz pozycję "PF Setting" i naciśnij przycisk \checkmark , aby wejść do konfiguracji współczynnika mocy.

Za pomocą przycisku ▲ albo ▼ wybierz jeden z trybów regulacji: "Customer Mode" albo "Fixed PF".

Wybierz "Customer Mode" i naciśnij "Enter", aby przywrócić ustawienia fabryczne

parametrów współczynnika mocy.

Za pomocą przycisku ▲ albo ▼ wybierz tryb "Fixed PF" i naciśnij przycisk ↓. Następnie możesz ustawić po kolei współczynnik mocy i fazę.

Naciśnij przycisk 🚽, aby zapisać wybór.

Naciśnij przycisk "ESC", aby powrócić do poprzedniego menu.

PF Sett	ing		PF Setting
Customer M	ode	Mode:	Fixed PF
		PF: 0.98	Phase:leading
	PF Sett Customer M	PF Setting Customer Mode	PF Setting Customer Mode PF: 0.98

9.4.16 Ustawianie trybu pracy instalacji fotowoltaicznej

Wejdź do podmenu "Advanced Setting" i za pomocą przycisku \blacktriangle albo \blacktriangledown wybierz "PV Mode

Setting", a następnie naciśnij *+*, aby wejść do ustawień trybu pracy instalacji fotowoltaicznej.

Za pomocą przycisku ▲ albo ▼ wybierz żądany tryb pracy.

Naciśnij przycisk 🚽, aby aktywować wybraną opcję.

Naciśnij przycisk "ESC", aby powrócić do strony "Advanced Setting".

	PV	Mode
PV	Mode Setting: Independent Mode Parallel Mode	9

9.4.17 Ustawianie trybu pracy urządzenia zgodnie z ustawą EEG

Wejdź do podmenu "Advanced Setting" i za pomocą przycisku ▲ albo ▼ wybierz "EEG

Setting", a następnie naciśnij 斗, aby wejść do trybu pracy urządzenia.

Za pomocą przycisku ▲ albo ▼ wybierz "Enable" albo "Disable".

Naciśnij przycisk *I*, aby aktywować wybraną opcję.

Naciśnij przycisk "ESC", aby powrócić do strony "Advanced Setting".

9.4.18 Ustawianie łączności

Za pomocą przycisku ▲ albo ▼ wybierz pozycję "Communication Setting" w podmenu″ Settings" i naciśnij przycisk ← , aby wejść do ustawień.

Należy chwilę odczekać, do czasu nawiązania łączności wewnętrznej.

Za pomocą przycisku ▲ albo ▼ ustaw adres protokołu Modbus.

Naciśnij przycisk 🚽, aby aktywować zmianę.

Naciśnij przycisk "ESC", aby powrócić do poprzedniego menu.

Jeśli falownik jest monitorowany poprzez sieć Wi-Fi albo sieć Ethernet, na stronie zostanie wyświetlony lokalny adres IP pobrany przez falownik z routera.

9.4.19 Informacje o urządzeniu

Za pomocą przycisku 🛦 albo 🔻 wybierz pozycję "Device Info" z głównego menu, a

następnie naciśnij przycisk \checkmark , aby przejść do informacji. Naciśnij przycisk "ESC", aby powrócić do głównego menu.

	Device	Info
TP: TLC8000		
s/N:123456789012	23456	
MCU:V1.00	.03017	-05
HMI:17524-751R	.50018	-07
STD:DE VDE-AR-N	4105	
1		

9.4.20 Usuwanie danych archiwalnych

Wejdź na stronę "Advanced Setting" i wprowadź poprawne hasło, a następnie naciśnij

przycisk 🚽, aby wejść na stronę "Clear Data".

Hasło do strony "Clear Data" można uzyskać od serwisanta.

Settings	Password
Basic Setting	
Advanced Setting	
Communication Setting	Password:0 0 0 0

Naciśnij przycisk +, aby usunąć dane archiwalne.

Clear Data?	Wait a Second	Clear Completed!

Naciśnij przycisk "ESC", aby wyjść.

10 Parametry techniczne

10.1 Parametry wejścia prądu stałego

Rodzaj falownika	TLC3000	TLC4000	TLC5000	TLC6000
Znamionowa moc wejściowa (@cosф=1)	3150 W	4200 W	5200 W	6300 W
Maksymalna zalecana moc wejściowa	3900 W	4600 W	5700 W	6300 W
Maksymalne napięcie	1000 V/640 V			
wejściowe/Znamionowe napięcie wejściowe				
Zakres napięcia MPP		200~	900 V	
	200~900	210~900	260~900	285~900
Zakres napięcia MPP przy pełnym obciążeniu	V	V	V	V
Wartość napięcia rozpoczęcia pracy falownika	250 V			
Minimalne napięcie prądu stałego podawanego do	180 V			
sieci				
Maksymalny wejściowy prąd stały (wejście		11 A/11 A		
A/wejście B)				
Isc PV, maksymalna wartość bezwzględna (wejście	16,5 A/16,5 A			
A/wejście B)				
Liczba modułów śledzących MPP	2			
Liczba łańcuchów przypadających na jeden moduł		1,	/1	
śledzący MPP				

Rodzaj falownika	TLC8000	TLC10000
Znamionowa moc wejściowa (@cosф=1)	8200 W 10 500 W	
Maksymalna zalecana moc wejściowa	9000 W	10 500 W
Maksymalne napięcie		
wejściowe/Znamionowe napięcie	1000 V / 640 V	
wejściowe		
Zakres napięcia MPP	200~900 V	
Zakres napięcia MPP przy pełnym obciążeniu	345 \sim 900 V	400 \sim 900 V
Wartość napięcia rozpoczęcia pracy falownika 250 V		
68	Instrukcia montażu i eks	ploatacii

Minimalne napięcie prądu stałego podawanego do sieci	180 V
Maksymalny wejściowy prąd stały (wejście A/wejście B)	15 A/11 A
I _{sc} PV, maksymalna wartość bezwzględna (wejście A/wejście B)	33 A/16,5 A
Liczba modułów śledzących MPP	2
Liczba łańcuchów przypadających na jeden moduł śledzący MPP	1/1

10.2 Parametry wyjściowego prądu przemiennego

Rodzaj falownika	TLC3000	TLC4000	TLC5000	TLC6000
Znamionowa moc wyjściowa	3000 W	4000 W	5000 W	6000 W
Maksymalna wyjściowa moc czynna ⁽¹⁾	3000 W	4400 W	5500 W	6000 W
Maksymalna wyjściowa moc pozorna	3000 VA	4400 VA	5500 VA	6000 VA
Znamionowe napięcie prądu przemiennego	3/N/P	E, 220/380 V, 2	230/400 V,240,	/415 V
Zakres znamionowego napięcia prądu przemiennego (między dwiema liniami) ⁽²⁾		277 V-	-485 V	
Częstotliwość sieciowa		50	Hz	
Częstotliwość sieciowa prądu przemiennego ⁽³⁾	50 Hz/ 60 Hz			
Zakres pracy przy częstotliwości sieciowej				
prądu przemiennego	44 Hz–55 Hz			
50 Hz				
Zakres pracy przy częstotliwości sieciowej				
prądu przemiennego	54 Hz–65 Hz			
60 Hz				
Znamionowy prąd wyjściowy przy 220 V	3×4,6 A 3×6,1 A 3×7,6 A 3×9,:		3×9,1 A	
Znamionowy prąd wyjściowy przy 230 V	3×4,4 A	3×5,8 A	3×7,3 A	3×8,7 A
Znamionowy prąd wyjściowy przy 240 V	3×4,2 A	3×5,6 A	3×7,0 A	3×8,4 A
Maksymalny ciągły prąd wyjściowy	3×5,2 A 3×6,8 A 3×8,5 A 3×9,2 A		3×9,2 A	
Instrukcja montażu i eksploatacji			69	

	VDE-AR-N 4105	0,80 ind.–0,80 poj.			
Współczynnik mocy	Inne zabezpieczenia	>0,97 przy	obciążeniu 20 10	1%, >0,99 przy (0%	obciążeniu
Prąd rozruchowy (wartość szczytowa i czas		28 A przy	28 A przy	28 A przy	28 A przy
trwania)		252 μs	252 μs	250 µs	253 µs
Współczynnik zniekształceń harmonicznych (THD) przy P _{ac,r}		< 4%	4% < 3%		
Nocna strata mocy		<1 W			
Strata mocy w trybie czuwania			<12	2 W	

Rodzaj falownika	TLC8000	TLC10000
Znamionowa moc wyjściowa	8000 W	10 000 W
Maksymalna wyjściowa moc czynna ⁽¹⁾	8800 W	10 000 W
Maksymalna wyjściowa moc pozorna	8800 VA	10 000 VA
Znamionowe napięcie prądu przemiennego	3/N/PE, 220/380 V, 230/	400 V,240/415 V
Zakres znamionowego napięcia prądu przemiennego (między dwiema liniami) ⁽²⁾	277 V–485 V	
Częstotliwość sieciowa	50 Hz	
Częstotliwość sieciowa prądu przemiennego ⁽³⁾	50 Hz/ 60 Hz	
Zakres pracy przy częstotliwości sieciowej prądu przemiennego 50 Hz	44 Hz–55 Hz	
Zakres pracy przy częstotliwości sieciowej prądu przemiennego 60 Hz	54 Hz–65 Hz	
Znamionowy prąd wyjściowy przy 220 V	3×12,2 A 3×15,1 A	
Znamionowy prąd wyjściowy przy 230 V	3×11,6 A	3×14,5 A
Znamionowy prąd wyjściowy przy 240 V	3×11,2 A	3×13,9 A

Maksymalny ciągły prąd wyjściowy		3×13,3 A	3×15,1 A	
VDE-AR-N 4105		0,80 ind.–0,80 poj.		
mocy	Inne zabezpieczenia	>0,97 przy obciążeniu 20%, >0,99 przy obciążeniu 100%		
Prąd rozruchowy (wartość szczytowa i czas trwania)		41 A przy 252 μs	41 A przy 250 μs	
Współczynnik zniekształceń harmonicznych (THD) przy P _{ac,r}		< 3%		
Nocna strata mocy		<1 W		
Strata mocy w trybie czuwania		<12 W		

(1) Przeciążenie prądu przemiennego na maksymalnym poziomie 10% można aktywować w ustawieniach na wyświetlaczu LCD (patrz punkt 9.4.13). Przed włączeniem tej opcji należy sprawdzić, czy jest to zgodne z miejscowymi przepisami i wymogami DNO.

(2) Zakres napięcia prądu przemiennego zależy od miejscowych norm i przepisów bezpieczeństwa.

(3) Zakres częstotliwości prądu przemiennego zależy od miejscowych norm i przepisów bezpieczeństwa.

10.3 Parametry ogólne

Rodzaj falownika	TLC3000~TLC6000	TLC8000~TLC10000
Masa netto	21 kg	25 kg
Wymiary (dł.×szer.×gł.)	405×498×222 mm	405×498×255 mm
Miejsce montażu	wewnątrz i na zewr	nątrz budynku
Zalecany sposób montażu	Uchwyt ści	enny
Zakres temperatury pracy	-25 do +60°C	
Maksymalna dopuszczalna wartość		
wilgotności względnej (bez	100%	
kondensacji)		
Najwyższa wysokość pracy	2000 m	
urządzenia nad poziomem morza		
Instrukcja montażu i eksploatacji		71

Stopień ochrony	IP65 zgodnie z normą IEC60529	
Klasa klimatyczna	4К4Н	
Klasa ochrony	l (zgodnie z norma	ą IEC 62103)
Kategoria przepięcia	Wejście prądu stałego: II, wyjście prądu przemiennego: III.	
Topologia	beztransformatorowy	
Fazy zasilające	3	
Rodzaj chłodzenia	konwekcyjne	
Emisja hałasu	<40 dB(A) w odległości 1 m	<45 dB(A) w odległości 1
		m
Wyświetlacz	Graficzny wyświetlacz LCD	
Interfejsy łączności	RS485/USB/ sieć Ethernet (opcjonalna)/ Wi-Fi (opcjonalna)	
Standardowa gwarancja	5 lat	

10.4 Przepisy bezpieczeństwa

Rodzaj falownika	TLC3000~TLC10000
Wewnętrzna ochrona przed przepięciem	wbudowane
Monitorowanie izolacji prądu stałego	wbudowane
Monitorowanie podawanego prądu stałego	wbudowane
Monitorowanie sieci elektroenergetycznej	wbudowane
Odłącznik prądu stałego	opcjonalny
Ochrona przed odwróceniem biegunowości prądu stałego /	wbudowane
Monitorowanie prądu różnicowego	wbudowane
Ochrona przed przejściem do pracy	wbudowana (monitorowanie trójfazowe)
Odporność elektromagnetyczna	EN61000-6-1, EN61000-6-2
Emisja elektromagnetyczna	EN61000–6-3, EN61000–6-4
Zakłócenia sieci	EN61000-3-2, EN61000-3-3
Kategoria przepięcia (według normy IEC 60664–1)	II (DC), III (AC)
i

W przypadku stosowania się do normy bezpieczeństwa DE-AR-N 4105 należy zapoznać się z poniższymi informacjami.

Jeśli w układzie wytwarzania energii stosowane jest centralne zabezpieczenie sieci i instalacji, wówczas wartość zabezpieczenia przed skokiem napięcia U>1,1 Un w zintegrowanym zabezpieczeniu sieci i instalacji można zmienić, używając hasła.

10.5 Sprawność

Sprawność eksploatacyjną przedstawiono graficznie dla trzech wartości napięcia wejściowego (V_{mppmax}, V_{dc, r} i V_{mppmin}). We wszystkich przypadkach sprawność odnosi się do znormalizowanej mocy wyjściowej (P_{ac}/P_{ac,r}). (zgodnie z normą EN 50524 (VDE 0126–13): 2008–10, pkt. 4.5.3).

Uwagi: Wartości określono w oparciu o znamionowe napięcie w sieci elektroenergetycznej, cos (ϕ) = 1 oraz temperaturę otoczenia 25°C.

Krzywa sprawności urządzenia TLC3000

Krzywa sprawności urządzenia TLC4000

Maksymalna sprawność, η _{max}	98,09%	
Europejska sprawność ważona, η _{ευ}	96,99%	

Krzywa sprawności urządzenia TLC5000

Krzywa sprawności urządzenia TLC6000

Maksymalna sprawność, η _{max}	97,99%
Europejska sprawność ważona, η _{ευ}	97,34%

Krzywa sprawności urządzenia TLC8000

Maksymalna sprawność, ŋ _{max}	98,1%	
Europejska sprawność ważona, η _{ευ}	97,5%	

Krzywa sprawności urządzenia TLC10000

10.6 Redukcja mocy

Aby zapewnić bezpieczne warunki pracy falownika, urządzenie może automatycznie obniżyć moc wyjściową.

Redukcja mocy jest uzależniona od wielu parametrów roboczych, takich jak temperatura otoczenia, napięcie wejściowe, napięcie w sieci elektroenergetycznej, częstotliwość w sieci elektroenergetycznej czy moc doprowadzana z modułów fotowoltaicznych. Urządzenie może obniżać moc wyjściową o określonych porach dnia, zgodnie z podanymi poniżej parametrami. Uwagi: Wartości określono w oparciu o znamionowe napięcie w sieci elektroenergetycznej oraz cos (φ) = 1.

Redukcja mocy przy podwyższonej temperaturze otoczenia (TLC3000)

Redukcja mocy przy podwyższonej temperaturze otoczenia (TLC4000)

Redukcja mocy przy podwyższonej temperaturze otoczenia (TLC5000)

Redukcja mocy przy podwyższonej temperaturze otoczenia (TLC6000)

Redukcja mocy przy podwyższonej temperaturze otoczenia (TLC8000)

Redukcja mocy przy podwyższonej temperaturze otoczenia (TLC10000)

11 Rozwiązywanie problemów

Gdy instalacja fotowoltaiczna nie działa poprawnie, na wyświetlaczu zostanie wyświetlony komunikat o błędzie i jednocześnie zapali się czerwona dioda LED.

Zalecamy wykonanie poniższych działań w celu przeprowadzenia szybkiej diagnostyki.

Przyczyny poszczególnych błędów opisano w punkcie 9.3 "Komunikaty ekranowe".

Element	Kod	Działania naprawcze
	błędu	
	33	 Sprawdź częstotliwość napięcia w sieci elektroenergetycznej i określ jak
		często pojawiają się znaczne wahania.
		Jeśli przyczyną tego błędu są częste wahania, spróbuj zmienić parametry
		robocze po uprzednim poinformowaniu o tym dostawcy energii
		elektrycznej.
		 Sprawdź napięcie w sieci elektroenergetycznej i miejsce przyłączenia do
		sieci na falowniku.
		 Sprawdź napięcie w sieci elektroenergetycznej w miejscu przyłączenia
		falownika do sieci.
	24	Jeśli napięcie w sieci elektroenergetycznej wykracza poza dopuszczalny
Błąd	34	zakres z powodu miejscowych warunków sieciowych, spróbuj zmienić
umożliwiając		monitorowane robocze wartości graniczne urządzenia po uprzednim
у		poinformowaniu o tym dostawcy energii elektrycznej.
wznowienie		Jeśli napięcie w sieci elektroenergetycznej nie wykracza poza dopuszczalny
pracy		zakres, a błąd nadal występuje, skontaktuj się z serwisem.
urządzenia		•Sprawdź bezpiecznik i wyzwalanie wyłącznika prądu przemiennego w
		skrzynce rozdzielczej.
	35	 Sprawdź napięcie w sieci elektroenergetycznej i prawidłowe działanie sieci.
		 Sprawdź kabel prądu przemiennego i miejsce przyłączenia do sieci na
		falowniku.
		Jeśli błąd nadal jest wyświetlany, skontaktuj się z serwisem.
		•Sprawdź, czy prawidłowo wykonano przyłącze uziemienia falownika.
	26	 Przeprowadź dokładne oględziny wszystkich kabli i modułów
	36	fotowoltaicznych.
		Jeśli błąd nadal jest wyświetlany, skontaktuj się z serwisem.

	37	•Sprawdź napięcie jałowe w łańcuchach fotowoltaicznych i upewnij się, że
		nie przekracza ono maksymalnego napięcia wejściowego prądu stałego
		falownika. Jeśli napięcie wejściowe nie wykracza poza dopuszczalny zakres,
		a błąd nadal występuje, skontaktuj się z serwisem.
	38	 Sprawdź izolację główną generatora fotowoltaicznego. Rezystancja izolacji
		musi być wyższa niż 1 M Ω ; w przeciwnym razie przeprowadź dokładne
		oględziny wszystkich kabli i modułów fotowoltaicznych.
		 Sprawdź, czy prawidłowo wykonano przyłącze uziemienia falownika.
		Jeśli ten błąd występuje często, skontaktuj się z serwisem.
	40	•Sprawdź, czy dopływ powietrza do radiatora nie jest utrudniony.
		•Sprawdź, czy temperatura otoczenia wokół falownika nie jest zbyt wysoka.
Błąd	viając 41, 42 43, 44	•Odłącz falownik od sieci elektroenergetycznej i generatora
umożliwiając		fotowoltaicznego, po czym podłącz do nich z powrotem po upływie 3 minut.
У		Jeśli błąd nadal jest wyświetlany, skontaktuj się z serwisem.
wznowienie	46	 Sprawdź napięcie jałowe w łańcuchach fotowoltaicznych i upewnij się, że
pracy		nie przekracza ono maksymalnego napięcia wejściowego prądu stałego
urządzenia		falownika.
		Jeśli napięcie wejściowe nie wykracza poza dopuszczalny zakres, a błąd
		nadal występuje, być może nastąpiło przerwanie obwodu wewnętrznego.
		Wówczas skontaktuj się z serwisem.
	1234	Odłacz falownik od sieci elektroenergetycznej i generatora
Bład stały	1,2,3,4, 8 9 10	fotowoltaicznego, no czym podłacz do nich z nowrotem no unhuwie 3 minut
διάα σταιλ	11 20	loči blad padal jost uvýwiotlany, skontaktuj sio z convisom
	11,39	jesii biqu nauai jest wyswietiany, skontaktuj się 2 serwisem.

12 Konserwacja

Zwykle falownik nie wymaga konserwacji ani kalibracji. Regularnie sprawdzać falownik i przewody pod kątem widocznych uszkodzeń. Przed czyszczeniem falownika odłączyć go od wszelkich źródeł zasilania. Obudowę, pokrywę i wyświetlacz czyścić miękką szmatką. Sprawdzić, czy radiator z tyłu pokrywy falownika nie jest zakryty.

12.1 Czyszczenie styków przełącznika prądu stałego

Styki przełącznika prądu stałego czyścić raz w roku. Przy czyszczeniu należy 5 razy przestawić przełącznik z położenia "I" do położenia "O". Przełącznik prądu stałego znajduje się po lewej stronie na dole obudowy.

12.2 Czyszczenie radiatora

Ryzyko obrażeń spowodowanych rozgrzanym radiatorem

- Podczas działania radiatora jego temperatura może przekroczyć 70°C. Nie należy dotykać radiatora podczas pracy.
- •Przed rozpoczęciem czyszczenia należy odczekać ok. 30 minut, aż radiator ostygnie dostatecznie.

Radiator należy czyścić sprężonym powietrzem albo miękką szczotką. Nie należy używać żrących substancji chemicznych, rozpuszczalników ani silnych środków czyszczących. Aby zapewnić prawidłowe działanie i długi okres użytkowania, należy zapewnić swobodny obieg powietrza wokół radiatora.

13 Recykling i utylizacja

i

Opakowania i wymienione części utylizować zgodnie z zasadami

obowiązującymi w miejscu montażu urządzenia.

Nie należy wyrzucać falownika wraz ze zwykłymi odpadami komunalnymi.

Oznakowanie WEEE

Nie wyrzucać urządzenia wraz z odpadami komunalnymi, ale zutylizować je zgodnie z przepisami dotyczącymi usuwania odpadów elektronicznych obowiązującymi w miejscu montażu.

14 Deklaracja zgodności z normami Unii Europejskiej

w zakresie następujących dyrektyw unijnych

• Dyrektywa w sprawie kompatybilności elektromagnetycznej 2014/30/WE (l marca 2014 r.) (EMC).

• Dyrektywa niskonapięciowa 2014/35/WE (L 96/357–374, 29 marca 2014 r.) (LVD). AISWEI New Energy Technology (Jiangsu) Co., Ltd. niniejszym potwierdza, że falowniki opisane w niniejszym dokumencie spełniają podstawowe wymogi i inne odnośne przepisy wyżej wspomnianych dyrektyw. Pełna treść deklaracji zgodności z wymogami Unii Europejskiej jest dostępna na <u>www.aiswei-tech.com</u>.

15 Gwarancja

Karta gwarancji fabrycznej znajduje się w opakowaniu z urządzeniem. Należy przechowywać kartę gwarancyjną w bezpiecznym miejscu. Warunki gwarancji można w razie konieczności pobrać ze strony https://www.aiswei-tech.com. W razie potrzeby skorzystania z usług gwarancyjnych w okresie objętym gwarancją, klient ma obowiązek przedłożyć kopię faktury oraz kartę gwarancji fabrycznej, a tabliczka znamionowa falownika musi być czytelna. Jeśli te warunki nie zostaną spełnione, AISWEI przysługuje prawo do odmowy świadczenia odnośnej usługi gwarancyjnej.

16 Kontakt

W przypadku wystąpienia problemów technicznych związanych z naszymi urządzeniami prosimy o kontakt z serwisem. Do udzielenia pomocy potrzebne będą nam następujące informacje:

- Typ falownika
- Numer seryjny falownika
- Typ i liczba podłączonych modułów fotowoltaicznych
- Kod błędu
- Miejsce montażu
- Karta gwarancyjna

Dane kontaktowe serwisu firmy AISWEI Dane kontaktowe regionalnych centrów serwisowych są dostępne na stronie https://www.aiswei-tech.com

AISWEI New Energy Technology (Jiangsu) Co., Ltd. Tel.: +86 512 6937 0998 Faks: +86 512 6937 3159 www.aiswei-tech.com Adres fabryki: No.588 Gangxing Road, Yangzhong Jiangsu, Chiny Adres centrali: Building 9, No.198 Xiangyang Road, Suzhou 215011, Chiny